General Certificate of Education June 2008
Advanced Subsidiary Examination
MATHEMATICS
MPC1
Unit Pure Core 1

Thursday 15 May 20089.00 am to 10.30 am
For this paper you must have:

- an 8-page answer book
- the blue AQA booklet of formulae and statistical tables.
You must not use a calculator.

Time allowed: 1 hour 30 minutes

Instructions

- Use black ink or black ball-point pen. Pencil should only be used for drawing.
- Write the information required on the front of your answer book. The Examining Body for this paper is AQA. The Paper Reference is MPC1.
- Answer all questions.
- Show all necessary working; otherwise marks for method may be lost.
- The use of calculators (scientific and graphics) is not permitted.

Information

- The maximum mark for this paper is 75 .
- The marks for questions are shown in brackets.

Advice

- Unless stated otherwise, you may quote formulae, without proof, from the booklet.

Answer all questions.

1 The straight line L has equation $y=3 x-1$ and the curve C has equation

$$
y=(x+3)(x-1)
$$

(a) Sketch on the same axes the line L and the curve C, showing the values of the intercepts on the x-axis and the y-axis.
(b) Show that the x-coordinates of the points of intersection of L and C satisfy the equation $x^{2}-x-2=0$.
(c) Hence find the coordinates of the points of intersection of L and C.

2 It is given that $x=\sqrt{3}$ and $y=\sqrt{12}$.
Find, in the simplest form, the value of:
(a) $x y$;
(b) $\frac{y}{x}$;
(c) $(x+y)^{2}$.

3 Two numbers, x and y, are such that $3 x+y=9$, where $x \geqslant 0$ and $y \geqslant 0$.
It is given that $V=x y^{2}$.
(a) Show that $V=81 x-54 x^{2}+9 x^{3}$.
(b) (i) Show that $\frac{\mathrm{d} V}{\mathrm{~d} x}=k\left(x^{2}-4 x+3\right)$, and state the value of the integer k.
(ii) Hence find the two values of x for which $\frac{\mathrm{d} V}{\mathrm{~d} x}=0$.
(c) Find $\frac{\mathrm{d}^{2} V}{\mathrm{~d} x^{2}}$.
(d) (i) Find the value of $\frac{\mathrm{d}^{2} V}{\mathrm{~d} x^{2}}$ for each of the two values of x found in part (b)(ii).
(ii) Hence determine the value of x for which V has a maximum value.
(iii) Find the maximum value of V.

4 (a) Express $x^{2}-3 x+4$ in the form $(x-p)^{2}+q$, where p and q are rational numbers.
(b) Hence write down the minimum value of the expression $x^{2}-3 x+4$.
(1 mark)
(c) Describe the geometrical transformation that maps the graph of $y=x^{2}$ onto the graph of $y=x^{2}-3 x+4$.
(3 marks)

5 The curve with equation $y=16-x^{4}$ is sketched below.

The points $A(-2,0), B(2,0)$ and $C(1,15)$ lie on the curve.
(a) Find an equation of the straight line $A C$.
(b) (i) Find $\int_{-2}^{1}\left(16-x^{4}\right) d x$.
(ii) Hence calculate the area of the shaded region bounded by the curve and the line $A C$.

6 The polynomial $\mathrm{p}(x)$ is given by $\mathrm{p}(x)=x^{3}+x^{2}-8 x-12$.
(a) Use the Remainder Theorem to find the remainder when $\mathrm{p}(x)$ is divided by $x-1$.
(2 marks)
(b) (i) Use the Factor Theorem to show that $x+2$ is a factor of $\mathrm{p}(x)$.
(ii) Express $\mathrm{p}(x)$ as the product of linear factors.
(c) (i) The curve with equation $y=x^{3}+x^{2}-8 x-12$ passes through the point $(0, k)$. State the value of k.
(ii) Sketch the graph of $y=x^{3}+x^{2}-8 x-12$, indicating the values of x where the curve touches or crosses the x-axis.

7 The circle S has centre $C(8,13)$ and touches the x-axis, as shown in the diagram.

(a) Write down an equation for S, giving your answer in the form

$$
\begin{equation*}
(x-a)^{2}+(y-b)^{2}=r^{2} \tag{2marks}
\end{equation*}
$$

(b) The point P with coordinates $(3,1)$ lies on the circle.
(i) Find the gradient of the straight line passing through P and C.
(ii) Hence find an equation of the tangent to the circle S at the point P, giving your answer in the form $a x+b y=c$, where a, b and c are integers.
(iii) The point Q also lies on the circle S, and the length of $P Q$ is 10 . Calculate the shortest distance from C to the chord $P Q$.
(3 marks)

8 The quadratic equation $(k+1) x^{2}+4 k x+9=0$ has real roots.
(a) Show that $4 k^{2}-9 k-9 \geqslant 0$.
(b) Hence find the possible values of k.

END OF QUESTIONS

